检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Microelectronics, Xidian University, Key Laboratory of Wide Band Gap Semiconductor Materials and Devices [2]School of Advanced Materials and Nanotechnology, Xidian University
出 处:《Chinese Physics B》2015年第11期452-459,共8页中国物理B(英文版)
基 金:supported by the Key Specific Projects of Ministry of Education of China(Grant No.625010101);the National Natural Science Foundation of China(Grant No.61234006);the Natural Science Foundation of Shaan Xi Province,China(Grant No.2013JQ8012);the Doctoral Fund of Ministry of Education of China(Grant No.20130203120017);the Specific Project of the Core Devices,China(Grant No.2013ZX0100100-004)
摘 要:This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the AI:Ti composition with no more than 50 at.% Al. The specific contact resistance (SCR) is obtained to be as low as 2.6 × 10-6Ωcm2 for the bilayered Ti(100 nm)/Al(100 nm) contact treated with 3 rain rapid thermal annealing (RTA) at 1000 ℃. The microstructure analyses examined by physical and chemical characterization techniques reveal an alloy-assisted ohmic contact formation mechanism, i.e., a high degree of alloying plays a decisive role in forming the interfacial ternary Ti3SiC2 dominating the ohmic behavior of the Ti/Al based contact. Furthermore, a globally covered Ti3 SiC2 layer with (0001)-oriented texture can be formed, regardless of the surface step bunching as well as its structural evolution during the metallization annealing.This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the AI:Ti composition with no more than 50 at.% Al. The specific contact resistance (SCR) is obtained to be as low as 2.6 × 10-6Ωcm2 for the bilayered Ti(100 nm)/Al(100 nm) contact treated with 3 rain rapid thermal annealing (RTA) at 1000 ℃. The microstructure analyses examined by physical and chemical characterization techniques reveal an alloy-assisted ohmic contact formation mechanism, i.e., a high degree of alloying plays a decisive role in forming the interfacial ternary Ti3SiC2 dominating the ohmic behavior of the Ti/Al based contact. Furthermore, a globally covered Ti3 SiC2 layer with (0001)-oriented texture can be formed, regardless of the surface step bunching as well as its structural evolution during the metallization annealing.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7