检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国空气动力研究与发展中心高速所,四川绵阳621000
出 处:《兵工自动化》2015年第10期72-75,共4页Ordnance Industry Automation
摘 要:针对风洞设备故障征兆与故障原因之间的非线性关系,提出基于概率神经网络的风洞设备故障预测诊断方法。利用概率神经网络强大的自主学习能力和较强的模式识别能力,来预测诊断风洞设备的故障原因,通过故障样本对概率神经网络进行训练,并对待测样本进行故障预测诊断。结果表明:概率神经网络能满足故障诊断快速和准确的要求,故障预测诊断精度较高,适用于在线检测,具有实际应用价值。According to the nonlinear mapping relationship between fault symptom and wind tunnel equipment faults, fault forecast and diagnosis method was presented which is based on probabilistic neural network(PNN). By using the powerful self-learning ability and strong pattern recognition capability, the cause of the fault for the wind tunnel equipment is predicted. The sample of the fault is established and the PNN is trained based on the symptom diagnosis. The test sample is used to fault forecast and diagnosis. The result shows that PNN can meet the requirement for fast diagnosis rate and high diagnosis precision during fault diagnosis process, so PNN can be used in the real time diagnosis with application value.
分 类 号:TJ06[兵器科学与技术—兵器发射理论与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28