检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋琳[1] 高满屯[1] 王三民[1] 王淑侠[1]
出 处:《图学学报》2015年第5期756-762,共7页Journal of Graphics
基 金:国家自然科学基金资助项目(51105310)
摘 要:针对活动轮廓模型利用水平集函数演化来分割图像时,只能分割灰度均匀的图像问题以及容易陷入能量泛函局部极小值的缺点,提出一种新的图像分割模型。模型将区域中的局部和全局信息融合的活动轮廓模型与边界模型相结合,然后利用图切割进行优化。实验表明,该方法对初始曲线不敏感,能分割灰度不均的自然图像,避免陷入局部极小,并能有效提高图像分割的速度和精度。As the active contour model segments images using level set formulation, such formulation results in very slow algorithms that get easily stuck in local solutions and only segment image with intensity homogeneity. In this paper, a new model combining region-based with geodesic active contours is proposed for image segmentation. The new energy functional can be iteratively minimized by graph cut algorithms with high computational efficiency compared with the level set framework. Experiment results show that the proposed model can effectively and efficiently segment images with intensity inhomogeneity. The method is less sensitive to the location of initial contour and can also avoid local minima solutions.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79