曲率模量不同的两组分膜泡形状方程的数值解  被引量:1

The numerical solutions of shape equation of two-domain vesicles with different bending rigidity

在线阅读下载全文

作  者:周五斌 张劭光[1] 

机构地区:[1]陕西师范大学物理学与信息技术学院,陕西西安710119

出  处:《陕西师范大学学报(自然科学版)》2015年第5期43-47,共5页Journal of Shaanxi Normal University:Natural Science Edition

基  金:国家自然科学基金(10374063);中央高校基本科研业务费专项资金(GK261001071)

摘  要:采用变分法讨论了旋转对称情况下曲率模量不相同的两组分膜泡的欧拉-拉格朗日形状方程及其边界条件。通过双向"打靶法"数值求解了两组分膜泡在确定边界条件下的形状方程,计算了不同平均曲率模量比εκ和线张力系数λ下的平衡形状。阐述了不同εκ和λ下平均曲率模量不相同的两组分膜泡的形状变化,导致这种变化的原因是膜泡两组分的曲率能和线张力能相互竞争的结果。计算结果说明数值计算方法合理可行,此数值解可进一步研究与实验相关的两组分膜泡问题。The Euler-Lagrange shape equation and boundary conditions of two-domain vesicles which have different curvature modulus with rotational symmetry are investigated by variational method.Then the numerical solutions of shape equation of two-domain vesicles under definite boundary conditions are obtained through shooting method.The equilibrium shape at differentεκand different line tension coefficientλare confirmed.The shape change of two-domain vesicles which have different curvature modulus is find at the differentεκandλ.The reason of such phenomenon is bending energy and tension energy of two-domain vesicles competing with each other.The results show that the numerical method is reasonable for study the equilibrium shape of twodomain vesicles,which help for further study of experiment-related problems for two-domain vesicles with different curvature modulus.

关 键 词:两组分膜泡 欧拉-拉格朗日方程 平均曲率模量 

分 类 号:O411.3[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象