融合检测和跟踪的实时人脸跟踪  被引量:7

Real-time face tracking based on detecting and tracking

在线阅读下载全文

作  者:刘嘉敏[1] 梁莹[1] 孙洪兴 段勇[1] 刘虓[2] 

机构地区:[1]沈阳工业大学信息科学与工程学院,沈阳110870 [2]华南理工大学土木与交通学院,广州510640

出  处:《中国图象图形学报》2015年第11期1473-1481,共9页Journal of Image and Graphics

基  金:国家自然科学基金项目(60695054);辽宁省自然科学基金项目(201102164);广东省自然科学基金项目(s2013040016594)~~

摘  要:目的在实时人脸跟踪过程中,因光照变化、目标被遮挡以及跟踪时间长等因素,导致的误差累积都会影响系统的整体性能。针对这些问题,提出一种融合检测和跟踪技术的方法,其中包含了检测、控制和跟踪3个模块(简称DCT)。方法在检测模块中,利用AdaBoost算法提取人脸的相关信息,并将信息传递给跟踪模块进行跟踪处理;在跟踪模块中,采用在线随机蕨和SURF(speeded up robust features)算法对目标进行跟踪。同时,在每次检测到目标之后,会通过控制模块对当前跟踪目标准确性进行判断。结果选取国际标准数据组并与LBP+Camshift+Kalman滤波算法、SEMI算法、TLD(tracking-learning-detection)算法比较,实验结果表明,DCT方法在目标发生尺度较大变化、目标遮挡、旋转、形变以及光照发生变化时都具有良好的跟踪识别效果,DCT方法识别准确率在95%以上,平均误识别率和漏识别率分别为0.86%和0.78%。结论 DCT方法具有消除误差累积,跟踪失败后自动恢复等特点,同时可以消除环境中光照、遮挡和仿射变换的影响并满足系统跟踪的实时性要求,运用于视频人脸跟踪系统中能够提高系统的实时性及鲁棒性。Objective With the high-speed development of computer technology and the need for video monitoring applications, face detection and tracking are gradually becoming a research hotspot and are widely used in public security, intelligent video surveillance, authentication, and others. Considering factors such as variation in lighting conditions, target obscuration, and long-term tracking, tracking human faces produces various errors that reduce the performance of the entire system. To resolve these problems, this paper presents an approach with a combination of detection and tracking technologies, and involves the three modules of detection, control and tracking (DCT) . Method In the control modules, human face features are detected though haar features, and calculated with integral images. This reduces computational complexity and enhances system speed. The AdaBoost algorithm is then used to extract a face's information in the detection module. Next, the information is transferred to the tracking module. The face target is tracked by using online random fern and Speeded Up Robust Features (SURF) algorithms in the tracking module. To improve tracking speed, 2-BitBP features are described in the random fern. Then, the P-N learning method is used to quickly locate similar objects. Similar targets and matching confidence of the target are determined based on the NCC algorithm. The similar target with the largest confidence value is considered the tracking target. Whereas, the control module is used to judge accuracy of the current tracking after each target is detected. The interactive unit in the control module transfers the testing results into the tracking modular for subsequent tracking. Three filters in the check unit are designed to filter check results in terms of scale size, target position, and similarity. This balances the performance of detection module and tracking module and avoids tracking failure because running the system for a long time and interference of similar targets. Result By using int

关 键 词:人脸检测 跟踪 控制 ADABOOST 随机蕨 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象