检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚红良[1] 王重阳[1] 王帆[1] 闻邦椿[1]
机构地区:[1]东北大学机械工程与自动化学院,辽宁沈阳110819
出 处:《振动工程学报》2015年第5期741-747,共7页Journal of Vibration Engineering
基 金:国家重点基础研究发展计划资助项目(2011CB706504);中央高校基本科研业务费专项资金资助项目(N120403007);国家自然科学基金资助项目(51005042)
摘 要:针对传统增量谐波平衡法求解多频激励局部非线性系统周期响应耗时太长的问题,提出了降维增量谐波平衡方法。首先通过谐波平衡理论分析了多频激励局部非线性系统响应中各自由度各次谐波的定量对比关系,并且根据该定量对比关系使系统的维数降至与非线性自由度个数相同;其次针对降维后的复数非线性系统推导了多频增量谐波平衡法,以及原系统各自由度各阶响应的还原方法;最后利用双频激励局部非线性悬臂梁系统进行了所提方法的精度和效率验证。结果表明:该方法的精度与传统方法一致,但是在局部非线性自由度较少时其效率远高于传统方法。The time-consuming problem of the traditional incremental harmonic balance method can be often encountered when determining the steady state response of local nonlinear system with multi-frequency excitation.The demension-reductive incremental harmonic balance method is proposed to increase the efficiency.For this method,the quantitative comparison relationship of every harmonic in each degree of freedom in the response of the local nonlinear system is analyzed by using the harmonic balance theory,and the dimension of system is reduced to be equal to the dimension of the nonlinear structure by using this relationship.Then the multi-frequency incremental harmonic balance method for the reduced complex system,as well as the response restoring method of every harmonic in each degree of freedom of the original system is deduced.Furthermore,the accuracy and efficiency of the proposed method is verified by using the dual-frequency excitation local nonlinear cantilever beam system.Studies show that the accuracy of the proposed method is in line with the traditional method but the efficiency is much higher with the system of less degree of freedom.
关 键 词:局部非线性 周期响应 多频激励 增量谐波平衡法 降维
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15