检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学系统工程研究所,广东广州510640 [2]广东工业大学应用数学学院,广东广州510006
出 处:《控制理论与应用》2015年第9期1246-1253,共8页Control Theory & Applications
基 金:Supported by National Natural Science Foundation of China(61273126);Research Foundation for the Doctoral Program of Higher Education of China(20130172110027);Fundamental Research Funds for the Central Universities(2013ZZ0056,2015ZM073);Ph.D Start-up Fund of Natural Science Foundation of Guangdong Province(2014A030310388)
摘 要:大部分的混杂随机微分方程很难得到解析解,因此利用数值方法研究其数值解具有重要意义.本文研究θ方法产生的数值解的几乎必然指数稳定性.在单边Lipschitz条件和线性增长条件下,首先给出方程的平凡解是几乎必然指数稳定的.然后在相同条件下,运用Chebyshev不等式和Borel-Cantelli引理,证明了对θ∈[0,1],θ方法重现平凡解的几乎必然指数稳定性.θ方法是一种比现有的Euler-Maruyama方法和向后Euler-Maruyama方法更广的方法.当θ等于1或0时,它分别退化为上述两种方法之一.本文的结论对上述两种方法同样适用.最后,数值例子和仿真说明了对不同的θ所提出方法的有效性和稳定性.It is difficult to obtain analytical solutions for most of the hybrid stochastic differential equations(SDEs),so the research on the numerical solutions by the use of numerical methods is of great significance.This paper focuses on the almost sure exponential stability of the numerical solutions produced by the θ-method.Under the one-sided Lipschitz condition and the linear growth condition,the almost sure exponential stability of the trivial solution for hybrid SDEs is first introduced.Then,by applying the Chebyshev inequality and the Borel-Cantelli lemma,we prove that the θ-method reproduces the corresponding stability of the trivial solution under the same conditions for θ ∈[0,1].The θ-method is a more general method than the existing Euler-Maruyama method as well as the backward Euler-Maruyama method.When θis equal to 1 or 0,it degenerates to one of the above two methods,respectively.The results of this paper are also applicable to these two methods.Finally,a numerical example and its simulations with different θ are given to illustrate the effectiveness and the stability of the proposed method.
关 键 词:布朗运动 θ方法 马尔科夫链 几乎必然指数稳定 混杂系统
分 类 号:O211.63[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229