基于增益字典查询的语音增强算法  

Speech Enhancement Based on Gain Dictionary Queries

在线阅读下载全文

作  者:庞亮[1] 陈亮[1] 张翼鹏[2] 黄清泉[1] 

机构地区:[1]解放军理工大学通信工程学院,南京210007 [2]解放军南京炮兵学院,南京211132

出  处:《计算机科学》2015年第10期16-19,共4页Computer Science

摘  要:对于基于统计模型的语音增强算法,不同分布模型对应于不同的增益函数,由于语音信号的不确定性,没有一种分布函数能准确对语音和噪声谱的分布建模,因此任何一种固定的统计模型均会存在一定的误差。所以提出一种增益字典查询的语音增强算法,该算法通过采用对数谱失真准则对一个语音噪声库进行增益的训练,得到一个增益的字典,其中输入为先验信噪比和后验信噪比的估计值。最后采用ITU-T P.826PESQ、分段信噪比、总信噪比和对数谱失真对该算法进行了测试,并与基于高斯分布模型、拉普拉斯分布模型的算法进行了对比。实验结果表明,该算法无论在非平稳噪声还是平稳噪声环境下都比其他几种算法增强效果好,且音乐噪声和残留背景噪声也可以得到很好的抑制。For speech enhancement algorithm based on statistical model, different distribution models are corresponding to different gain function, due to the uncertainty of the speech signal, no distribution function can accurately model the speech and noise spectra distribution, so any kind of fixed reference models will have some errors. We presented a gain dictionary queries based speech enhancement algorithm, getting a dictionary gain through training the voice of a noise li- brary using log-spectral distortion criterion, for which the input is the estimate value of a priori and a posteriori SNR. Finally, we used ITU-T P. 826 PESQ, segmented SNR, total SNR and log-spectral distortion criterion to test the pro- posed algorithm, and compared this algorithm with Gaussian distribution model and Lapla.ce distribution model. The ex- perimental results show that the algorithm is better than the other algorithms, whether in stationary or non-stationary noisy environments, and musical noise and residual background noise can be well suppressed.

关 键 词:语音增强 字典查询 判决引导 改进递归平均算法 

分 类 号:TN912.35[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象