检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学电子工程学院,四川成都611731
出 处:《系统工程与电子技术》2015年第12期2677-2682,共6页Systems Engineering and Electronics
基 金:中国博士后科学基金(2015M572463)资助课题
摘 要:针对密集杂波条件下的目标检测与跟踪问题,开展极大似然-概率数据关联(maximum likelihoodprobabilistic data association,ML-PDA)算法优化与实时计算问题研究。在算法层面,通过在极大化对数似然比(log likelihood ratio,LLR)过程中引入粒子群优化(particle swarm optimization,PSO)方法,并进一步提出基于观测引导的PSO播撒粒子方式,提升算法的计算效率;在实现层面,提出基于图形处理器(graphic processing unit,GPU)的PSO实现策略。仿真实验结果说明了基于观测引导PSO算法搜索的有效性。在GPU平台上实现该算法获得显著的加速比,验证了所提出方法具有工程实时性。The target detection and tracking problems when involved in high dense clutter are addressed. Specifically, we propose to solve the optimization and computation problems of maximum likelihood-probabilistic data association (ML-PDA). The particle swarm optimization (PSO) algorithm to maximize the log likelihood ratio (LLR) is adopted. We propose to initialize the particles of PSO based on measurements, which improves the computation efficiency. Furthermore, we propose a scheme which allows implementing PSO in parallel on graphic processing unit (GPU). The efficiency of the proposed algorithm and the parallelized scheme are illus- trated based on simulations.
关 键 词:检测前跟踪 极大似然-概率数据关联 粒子群优化 并行处理
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222