检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军工程大学电子工程学院,湖北武汉430033
出 处:《系统工程与电子技术》2015年第12期2683-2688,共6页Systems Engineering and Electronics
基 金:国家高技术研究发展计划(863计划)(2014AAXXX4061)资助课题
摘 要:针对标准标签多伯努利(labeled multi-Bernoulli,LMB)算法只考虑了单个运动模型的问题,提出了一种适用于跳转马尔科夫系统的多模型标签多伯努利(multiple model LMB,MM-LMB)算法。首先对目标状态进行扩展,将多模型思想引入LMB算法得到了新的预测和更新方程,并给出了算法的序贯蒙特卡罗实现。仿真实验表明,MM-LMB算法能对多机动目标进行有效跟踪,在复杂探测环境下跟踪精度优于多模型概率假设密度(multiple model probability hypothesis density,MM-PHD)算法和多模型势平衡多目标多伯努利(multiple model cardinality balanced multi-target multi-Bernoulli,MM-CBMeMBer)算法;所提算法计算量当目标相距较远时低于MM-PHD和MM-CBMeMBer,目标聚集时增长速度快于对比算法。For the problem that the standard labeled multi-Bernoulli (LMB) filter only considers the single motion model case, a multiple model LMB (MM-LMB) filter for maneuvering target tracking is proposed. By introducing the jump Markov (JM) system to the LMB method, the extended recursion formulations are presen- ted, and the sequential Monte Carlo implementation of the proposed method is given. Simulations show that the MM-LMB filter can track multiple maneuvering targets effectively, and has higher tracking accuracy than the multiple model probability hypothesis density (MM-PHD) filter and the multiple model cardinality balanced multi-target multi-Bernoulli (MM-CBMeMBer) filter in complex detection environment. The calculation cost of the proposed method is lower than MM-PHD and MM-CBMeMBer when the targets are not closed, while grows faster than the compared algorithms when the targets gather together.
关 键 词:多目标跟踪 机动目标 标签多伯努利 序贯蒙特卡罗
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.216.164