基于改进的EEMD数据融合方法在轴承故障诊断中的应用  被引量:7

Fault diagnosis of rolling bearings based on combining improved EEMD adaptive denoising with multi-sensor joint acquisition

在线阅读下载全文

作  者:武哲[1] 张建超[1] 

机构地区:[1]北京交通大学机械与电子控制工程学院,北京100044

出  处:《北京交通大学学报》2016年第3期43-49,共7页JOURNAL OF BEIJING JIAOTONG UNIVERSITY

基  金:国家自然科学基金资助项目(11227201;11202141;11302137);铁路总公司重大项目资助(2014J012);河北省自然科学基金资助项目(A2013210013;A2015210005);河北省教育厅项目资助(YQ2014028)

摘  要:提出一种基于改进的EEMD谱峭度的多传感器联合轴承故障诊断方法,通过多个加速度传感器联合采集振动信号,利用EEMD自适应地将信号分解成多个分量,通过计算每个IMF分量的互相关系数法进行自适应重构以突出故障特征信号;对合成后的信号画快速峭度图,获得峭度最大时的中心频率和带宽;根据快速峭度图自适应确定电子谐振器的参数,并对此合成信号进行谐振增益;对谐振增益后的信号进行Hilbert解调,并与理论计算的轴承故障特征频率比较,从而确定故障部位.通过仿真的故障轴承信号和滚动轴承实验进行了验证,结果表明:该方法对滚动轴承故障的检测精度更高,提取精度和抗噪声能力方面有了明显的改进,对工程实践具有重要的指导意义.A method for fault diagnosis of rolling bearings based on combining improved EEMD(Ensemble Empirical Mode Decomposition)adaptive denoising with multi-sensor joint acquisition is presented.First,vibration signal is jointly acquired through multiple acceleration sensors.Second,the original signal is decomposed into many components via EEMD adaptively,and adaptive reconstruction is performed by using the correlation coefficient method to highlight fault characteristic signals.Then,the central frequency and bandwidth of an electronic resonant are determined with spectral kurtosis,conducting resonant gain for synthesized signal.Last,the gained resonant signal is analyzed by using the Hilbert envelope,and the fault location can be determined after comparison with the bearing fault characteristic frequency calculated theoretically.This method is verified through simulated fault bearing signal and rolling bearing tests.The results prove the correctness and effectiveness of the method used in this paper,which has an important guiding significance for engineering practice.

关 键 词:电子谐振器 多传感器联合采集 EEMD自适应消噪 谱峭度 

分 类 号:TH133.3[机械工程—机械制造及自动化] TP202[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象