检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海南大学信息科学技术学院,海南海口570228 [2]海口经济学院公共课部,海南海口570000
出 处:《数学的实践与认识》2015年第21期165-171,共7页Mathematics in Practice and Theory
基 金:国家自然科学基金(10971044);海南大学教育教学研究课题立项项目(hdjy1206)
摘 要:考察一般有限连通图的邻强边染色方案以及邻强边色数,首先对其进行多元多项式方程组建模,然后利用方程组对应的Grbner基来判定方程组解存在性,进而达到判定图的邻强边染色方案的存在性的目的,最后给出求邻强边色数及相应邻强边染色方案的方法。This paper investigates the adjacent strong edge coloring solution of the limited connected graph and the adjacent strong edge coloring number. First of all, set a model of the adjacent strong edge coloring problem by using multivariate polynomial equation group. Then, the existence of solutions on the multivariate polynomial equations can be discussed by using corresponding Gr bner basis of the multivariate polynomial equations. It follows that the existence of the solution on the adjacent strong edge coloring problem can be realized. At last, the adjacent strong edge coloring number and the solution method of the corresponding adjacent strong edge coloring are given. After the analysis, this thesis provides a specific example to verify the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.116.170