检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕蕾[1,2] 张金玲[3] 朱英杰 刘弘[1,2]
机构地区:[1]山东师范大学信息科学与工程学院,济南250014 [2]山东省分布式计算机软件新技术重点实验室,济南250014 [3]中国人民大学信息学院,北京100872 [4]汤森路透(中国)公司,北京100094
出 处:《计算机辅助设计与图形学学报》2015年第12期2410-2418,共9页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(61202225;61272094;61303007;61303157;61402269;61472232;61502505);山东省高等学校科技计划项目(J13LN13;J14LN09)
摘 要:在虚拟环境的交互任务实施过程中,手势识别的正确率和效率将直接影响到操作者的沉浸感和成功率.针对已有的手势识别方法难以在既保证较高识别正确率的同时又满足实时性要求的问题,提出一种能够有效用于静态手势识别的手型特征提取方法以及相应的手型特征点集匹配策略.首先,利用可穿戴式设备——数据手套采集多种原始的手部运动数据,对这些数据进行预处理后构建出手势库;然后,提取并表示每一种手势的手型特征;最后,运用特征点集模板匹配方法进行手势识别.实验结果证明,该方法在手势类别数目较大(25类手势)时识别正确率能够达到98.9%,并且计算量小、效率高,能够保证用户和虚拟环境交互的实时性.In the process of interacting with the virtual environment, the gesture recognition accuracy and effi-ciency will directly influence the operator’s sense of immersion and success rate. The available methods are hard-er to keep greater accuracy, and meet the real-time request at the same time. Aiming at this problem, a gesture recognition method based on the shape of the hand feature is proposed in this paper. Firstly, we capture a serial of original data using data glove and construct the gesture base by modifying the original gesture. Then we extract the hand-type characteristic of each gesture. At last, we make the gesture recognition by the improved feature point set template match algorithm. Experimental results show that 98.9% accuracy is achieved when the number of categories of gesture is larger (up to twenty-five Categories). Moreover, the proposed method is simple enough to meet the real-time requirements.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145