检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江省水利水电勘测设计院,浙江杭州310002 [2]中南大学地球科学与信息物理学院有色资源与地质灾害探查湖南省重点实验室,湖南长沙410083
出 处:《物探与化探》2015年第6期1233-1237,共5页Geophysical and Geochemical Exploration
基 金:国家自然科学基金资助项目(40874055);湖南省自然科学基金资助项目(14JJ2012)
摘 要:径向基点插值法(RPIM)作为一种高精度的无网格方法,其形函数采用与径向基函数结合的插值方法构造,边界条件可直接加载。将RPIM用于点源二维变分问题的求解,介绍了RPIM的近似原理;推导了点源二维问题的RPIM总体矩阵表达式,简述了背景网格积分技术,研究了高斯点数目对RPIM计算精度的影响;最后通过数值试验得出了支持域无量纲尺寸α最优选择区间与RPIM形状参数最优值。研究结果表明:RPIM求解点源二维变分问题具有较好的鲁棒性,α最优区间为1.0~1.2。Radial point interpolation method( RPIM) is a kind of high precision meshfree method. As its shape function is constructed by interpolation method in combination with radial basis function,the boundary conditions can be directly loaded. This paper utilizes RPIM to the calculation of point source two-dimensional electric field. Firstly,the approximate principle of RPIM is introduced in detail and the discrete system matrix expression is deduced corresponding to point source two-dimensional variational problem. Secondly,background grid integral technology is briefly introduced and the influence of different number of gauss points on calculation accuracy of RPIM is discussed. Lastly,the optimal range of support domain dimensionless size and the shape parameter optimal value of RPIM are obtained through numerical experiments. Studies show that RPIM has robustness for solving point source two-dimensional variational problem,and the optimal α range is 1.0 to 1.2.
关 键 词:径向基点插值法 点源 径向基函数 点源二维变分问题
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33