兰成渝腐蚀管道失效压力的GA-BP神经网络组合预测方法  被引量:11

Combined forecasting method of GA-BP neural network for failure pressure of Lan-Cheng-Yu corroded pipelines

在线阅读下载全文

作  者:李琴[1] 孙春梅[1] 黄志强[1] 肖祥[1] 汤海平[1] 

机构地区:[1]西南石油大学,四川成都610500

出  处:《中国安全生产科学技术》2015年第11期83-89,共7页Journal of Safety Science and Technology

基  金:中石油科技创新基金项目(2011D-5006-0607);高等院校研究生创新基金项目(CX2014SY17)

摘  要:为准确掌握管道失效压力,保证管道安全运行,根据神经网络的非线性和良好的函数逼近特性,提出了基于遗传算法(GA)优化的BP神经网络组合模型的腐蚀长输管道失效压力预测模型。组合模型将最佳组合阀值与权值隐含在网络的连接中,兼具遗传算法、人工神经网络预测的优点,并克服了原始数据少对预测精度的影响,同时避免了神经网络容易陷入局部寻优的缺陷,也增强了网络的适应性,改善网络的收敛性,在客观地反应腐蚀油气管道失效压力变化趋势方面具有一定的优势。通过实例分析,结果表明:BP神经网络的预测值和Modified B31G计算结果与真实值误差均较大,而GA-BP的预测值与实际结果的相对误差最大为6.12%,有很好的一致性,为管道的预防性维修提供了理论依据。In order to grasp the failure pressure of pipeline accurately, and ensure the safe operation of pipeline, according to the nonlinear and good function approximating properties of neural network, a prediction model on fail- ure pressure of long distance corroded pipeline was proposed by adopting the combined model of BP neural network based on genetic algorithm (GA) optimization. The combined model implies the best combination threshold and weight in the connection of network. It has the advantages of both genetic algorithm and artificial neural network forecasting, and overcomes the influence of less original data on the accuracy of prediction. At the same time, it can avoid the defect of neural network which is easy to fall into local optimization, and also enhance the adaptability of network and improve the convergence of network. It has certain superiority to reflect the change trend of failure pressure in corroded pipelines objectively. Through case analysis, the results showed that compared with the real value, the errors of forecasting value by BP neural network and calculation result of Modified B31G were both lar- ger, while the largest relative error of forecasting value by GA-BP was 6.12%, which has a good agreement. Itprovides a theoretical basis for the preventive maintenance of pipeline.

关 键 词:失效压力 遗传算法 BP神经网络 组合预测 

分 类 号:X936[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象