检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学信息与通信工程学院,哈尔滨150001
出 处:《哈尔滨工业大学学报》2015年第11期82-88,共7页Journal of Harbin Institute of Technology
基 金:国家自然科学基金(61275010);国家教育部博士点基金(20132304110007);黑龙江省自然科学基金(F201409);中央高校基本科研业务费重点项(HEUCFD1410)
摘 要:为减少高光谱遥感图像光谱空间冗余、降低计算复杂度,提出一种基于人工蜂群算法的高光谱图像波段选择方法.首先,根据波段相关性矩阵对全波段进行预处理,获得相关性较小的波段子空间;然后,利用人工蜂群算法以最佳指数与JM距离的加权和为适应度函数在各子空间进行邻域搜索,不断更新至收敛为止,从而获得最优波段组合.最后,利用AVIRIS数据和ROSIS数据对提出的算法与基于蚁群,粒子群,拟态物理学算法的波段选择方法进行实验.仿真结果表明:基于人工蜂群算法的波段选择能够在保证良好收敛性的同时,大大降低计算花费,所获得的波段组合用于高光谱图像分类时,可以得到较好的分类精度.A hyperspectral image band selection algorithm based on artificial bee colony algorithm isproposed to reducespectralredundancy of hyperspectral remote sensing image and computational complexity.Firstly,accordingtothecorrelationcoefficientmatrices among bands some pretreatments have been taken too btain the band sub space with less relevance.Then,neighborhood search has been implemented on each sub-space by using artificial bee colony algorithm together with the weighted sum between JM distance and OIF as the fitness function.To obtain the optimal band combination,the search is updated until the algorithm is convergent.Finally,the proposed algorithmis used to compare with band selection methods based on ACO,PSO and APO.The experimental results show that the proposed algorithm can not only ensure a good convergence but also reduce the computational cost.Simultaneously,when the obtained bands combination is used for hyperspectral image classification,higher classification accuracy can be obtained.
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200