检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数值计算与计算机应用》2015年第4期288-296,共9页Journal on Numerical Methods and Computer Applications
基 金:国家自然科学基金(11471262)
摘 要:采用修正共轭梯度法(MCG算法)求由Newton算法每一步迭代计算导出的线性矩阵方程的近似子矩阵约束(SMC)对称解或者近似SMC对称最小二乘解,建立求离散时间代数Riccati矩阵方程SMC对称解的非精确Newton-MCG算法.该算法仅要求Riccati矩阵方程有SMC对称解,不要求它的SMC对称解唯一,也不要求导出的线性矩阵方程有相应的SMC对称解.数值算例表明,非精确Newton-MCG算法是有效的.In this paper, the inexact Newton-MCG algorithm for solving the symmetric solution with a submatrix constraint of the discrete-time algebraic Riccati equation is proposed. The algorithm is based on the MCG algorithm, which is applied to getting the approximate symmetric solution or the approximate symmetric least-square solution with a submatrix constraint of linear matrix equation derived from each Newton step. It only requires the Riccati equation to have the symmetric solution with a submatrix constraint, and the solution may not be unique. Moreover, it doesn't require the derived linear matrix equation to have the relevant solution. Numerical results illustrate the efficiency of the algorithm.
关 键 词:Riccati矩阵方程 子矩阵约束对称解 非精确Newton算法 MCG算法 非精确Newton—MCG算法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43