检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学计算机科学与技术学院,重庆400065
出 处:《计算机应用》2015年第12期3341-3343,3347,共4页journal of Computer Applications
基 金:人力资源和社会保障部留学人员科技活动择优资助项目(F201404);重庆市基础与前沿研究项目(cstc2013jcyj A40023);教育部留学回国人员科研启动基金资助项目(F201503);重庆邮电大学青年科学研究项目(A2012-90)
摘 要:针对无线传感器网络(WSN)中感知数据易缺失问题,提出了一种基于感知数据属性相关性的缺失值估计方法。该方法采用多元线性回归模型,对属性相关的感知数据的缺失值进行估计;同时,为提高算法估计的鲁棒性,提出了基于感知数据属性的数据交织传送策略。仿真结果表明,所提出的估计方法能有效估计无线传感器网络中的缺失值,相比基于时空相关性的线性插值模型(LM)算法和传统的最近邻插值(NNI)算法具有更高的精度和稳定性。The missing of the sensing data is inevitable due to the inherent characteristic of Wireless Sensor Network( WSN), which affects various applications significantly. To solve the problem, an estimation algorithm for missing values based on attribute correlation of the sensing data was proposed. The multiple regression model was adopted to estimate missing values of attribute-correlated sensing data. Meanwhile, a data interleaved transmitting strategy was proposed to improve the robustness of the algorithm. The simulation results show that the proposed algorithm can estimate the missing values and is more accurate and reliable than some algorithms based on temporal and spatial correlation such as Linear interpolation Model( LM) algorithm and the traditional Nearest Neighbor Interpolation( NNI) algorithm.
关 键 词:无线传感器网络 属性相关性 缺失值 数据交织 鲁棒性
分 类 号:TP393.03[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.77.171