检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李振华[1] 鲜勇[1] 雷刚[1] 刘炳琪[1] 张大巧[1]
机构地区:[1]第二炮兵工程大学,西安710025
出 处:《导弹与航天运载技术》2015年第6期96-99,共4页Missiles and Space Vehicles
基 金:国家自然科学基金(61403399)
摘 要:应用种群熵粒子群优化(Population Entropy based Particle Swarm Optimization,EPSO)算法研究运载火箭上升段交会弹道优化设计问题。以运载火箭和目标飞行器在交会时刻距离最小为目标函数,建立运载火箭上升段交会弹道优化模型,同时分别采用EPSO优化算法和传统粒子群优化算法进行求解。仿真结果表明,EPSO算法能够有效解决运载火箭上升段交会弹道优化问题,平均交会位置误差为8.33 m,较传统粒子群算法减少了149.37 m,平均搜索速度较传统算法提高了27%。EPSO算法收敛精度高,搜索速度快,更适用于解决上升段交会弹道优化这样的复杂约束优化问题。The paper researched the optimum design of launch vehicle ascent rendezvous trajectory using population entropy based particle swarm optimization (EPSO) algorithm. Take the minimum distance of launch vehicle and target aircraft at intersection point as the objective function, an optimization model of launch vehicle ascent rendezvous trajectory is established and at the same time solved by EPSO algorithm and traditional particle swarm optimization algorithm respectively. The simulation result indicates that the EPSO algorithm can solve the optimization problem of launch vehicle ascent rendezvous trajectory effectively, the average error of rendezvous position is 8.33 m, reduced 149.37 m and the average search speed is improved 27% compared with the traditional particle swarm optimization algorithm. The EPSO algorithm is more suitable to solve complex constraint optimization problem as optimum design of launch vehicle ascent rendezvous trajectory because of its higher convergence accuracy and faster search speed.
关 键 词:种群熵粒子群优化算法 飞行程序 交会弹道 优化
分 类 号:V412.1[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222