压缩感知的人脸图像去噪  被引量:3

Face Image Denoising of Compressed Sensing

在线阅读下载全文

作  者:林克正[1] 魏颖[1] 程卫月[1] 

机构地区:[1]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080

出  处:《哈尔滨理工大学学报》2015年第5期91-96,共6页Journal of Harbin University of Science and Technology

基  金:黑龙江省教育厅科学技术研究项目(11551087)

摘  要:为解决人脸识别领域的噪声图像恢复问题,提出一种压缩感知的人脸图像去噪算法,协同稀疏性度量(collaborative sparse measure,CSM).CSM算法利用图像的先验知识,用一个域将图像稀疏表示,将图像的二维稀疏表示和三维稀疏表示同时进行自适应混合空间域转换,利用增广拉格朗日技术求解.实验结果表明,CSM算法的信噪比明显高于传统算法的信噪比,具有高效性.To solve the problem of noisy image restoration in face recognition area, a algorithm ot race image de-noising of compressed sensing was proposed in this paper, called Collaborative Sparse Measure (CSM) . The algorithm of CSM used a priori knowledge of image, image sparse representation with a domain, and the sparse representation of two-dimensional and three-dimensional simultaneously did adaptive hybrid spa- tial domain conversion, and solved problem with Augmented Lagrangian technique. The result of the experi- ment indicates that the signal to noise ratio of CSM algorithm is superior to that of the traditional algorithm, which has a high efficiency.

关 键 词:压缩感知 协同稀疏性度量 图像去噪 空间域 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象