遮挡情况下多尺度压缩感知跟踪  被引量:2

Multi-scale Compression Perception Tracking under Occlusion

在线阅读下载全文

作  者:张丽娟[1] 纪峰[1] 常霞[1] 李泽仁[1] 

机构地区:[1]北方民族大学数学与信息科学学院,宁夏银川750021

出  处:《红外技术》2015年第12期1052-1057,共6页Infrared Technology

基  金:国家自然科学基金项目;编号:61440044;61102008;61462002;61163017;宁夏自然科学基金项目;编号:NZ13097;国家民委科研项目;编号:14BFZ003

摘  要:针对现有在线学习跟踪算法中目标在线模型更新错误导致跟踪漂移的问题,提出一种在线模型自适应更新的目标跟踪算法:首先利用压缩感知技术的高效性,对多尺度图像特征进行降维,并提取多尺度样本来实现目标尺度自适应更新,再由提取的正负样本低维图像特征训练朴素贝叶斯分类器,利用分类器输出置信度最大处目标样本完成目标跟踪,并依据当前目标置信度来自适应在线模型更新速率,减少了遮挡带来的目标错误更新。实验表明:该方法在尺度变化、局部和全局遮挡、光照变化等情况下均能完成鲁棒跟踪,平均跟踪成功率较原始压缩感知跟踪算法提高了20.3%。In order to deal with the drift problem by updating error in current online learning tracking algorithms, a new adaptive update tracking algorithm is proposed. First of all, based on the efficiency of compressed sensing, the multi-scale image feature space is decreased, and multi-scale samples are exacted to update the target scale. Secondly, a naive Bayes classifier is trained by low dimension image features from positive and negative samples. Experimental results show that the proposed algorithm can complete the robust tracking under the condition of scale changes, partial and full occlusion, illumination changes, etc. Tracking successful rate is improved by 20.3% compared with the original compressive tracking.

关 键 词:目标跟踪 在线学习 压缩感知 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象