检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学信息工程学院,山西太原030024
出 处:《微电子学与计算机》2015年第12期159-162,168,共5页Microelectronics & Computer
基 金:高等学校博士学科点专项科研基金(20131402110003)
摘 要:提出了一种基于云遗传算法的阈值图像分割法.该算法将图像分割最佳阈值选取问题转化为遗传算法的寻优问题,根据正态隶属云期望曲线方程的特点将云模型引入遗传算法中,采用X条件云发生器算法产生交叉概率和变异概率,避免在寻找最佳阈值的过程中陷入局部最优解.实验结果表明,该算法在收敛速度有很大提高,且得到的阈值范围相比于传统遗传算法更加稳定.Thresholding image segmentation based on the cloud-model-based genetic algorithm was proposed.The algorithm selection put the best threshold value image segmentation problem is converted into the optimization problem of genetic algorithm.According to the characteristics of normal membership cloud expected curve equation,the cloud model is introduced into the genetic algorithm.The X-conditional cloud generator for the normal cloud model is used as cross probability and mutation probability in this hybrid genetic algorithm,Avoid the genetic algorithm's falling into local optimization.The experimental results show that the range of the thresholds is more stable than traditional genetic algorithm and it less time consuming and better satisfies the request of real-time processing in image segmentation.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8