基于特征提取相似日的ELM短期负荷预测研究  被引量:7

Short-term Load Forecasting Based on Daily Feature Extraction of Similar Days and ELM

在线阅读下载全文

作  者:马立新[1] 尹晶晶[1] 郑晓栋 

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《电子科技》2015年第12期22-25,共4页Electronic Science and Technology

基  金:国家自然科学基金资助项目(61205076);上海市研究生创新基金资助项目(JWCXSL1302)

摘  要:为解决短期电力负荷预测中预测精度差、计算时间长等问题,提出一种基于自组织特征映射网络进行特征提取相似日的极限学习机短期电力负荷预测方法。通过自组织特征映射网络找出与预测日同类型的历史数据作为训练样本;并采用预测能力强、计算时间短的ELM网络进行预测。以某市电力负荷数据进行仿真,并将上述方法与传统神经网络进行对比。仿真算例表明,基于特征提取相似日的ELM方法具有较高的预测精度,泛化性能好,且运算时间短。In order to solve the problems of forecasting method,such as low forecasting accuracy,and long computation time in short-term electric power load forecasting,an approach to short-term load forecasting based on self-organizing feature mapping of similar days feature extraction and ELM( Extreme Learning Machine) combined method is proposed in this paper. Firstly,self-organizing neural network is used to the classification of related data.The data of the same type as that of the forecasting day are found out. Then these training samples are forecasted by ELM,which has strong ability to predict and short computing time. The power load data of one city were used for simulating. The proposed method is compared with ELM and back propagation( BP) neural network. The experimental results show that ELM method based on feature extraction of similar days has high prediction precision,good generalization performance and short running time.

关 键 词:自组织特征映射 特征提取 相似日 极限学习机 短期负荷预测 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象