检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐瑞春[1] 张肖南 郭双乐[3] 邱悦 丁香乾[1]
机构地区:[1]中国海洋大学信息科学与工程学院,山东青岛266100 [2]武汉东方赛思软件有限公司 [3]滨州学院信息工程系,山东滨州256600 [4]北京三快在线科技有限公司,北京朝阳区100000
出 处:《中国海洋大学学报(自然科学版)》2015年第12期125-130,共6页Periodical of Ocean University of China
基 金:国家科技支撑计划项目(2012BAH15F01)资助
摘 要:本文研究在云环境中手机故障案例检索时的案例匹配问题,提出了一种基于粗糙集和欧式距离的案例相似度匹配算法CMARE(Case Matching Algorithm based on Rough sets and Euclidean distance)。首先云计算平台收集手机故障参数,根据参数构建粗糙集信息表,利用粗糙集求出信息表里各案例特征参数的属性客观权重值并结合专家经验给出综合的属性权重值,最后利用此权重值和欧式距离计算案例间的相似度,找出案例库中与新案例最相似的案例。该算法的创新之处在于确定案例属性权重值时基于数据本身和人工经验,避免了过分依靠人工经验知识设定属性权重的不足;与规则推理方式不同,本文使用案例推理的方式。仿真实例说明了算法的有效性。Study the mobile phone fault case retrieval in a cloud environment when matching cases,we propose a similarity matching algorithm CMARE (Case Matching Algorithms based on Rough sets and Euclidean distance).First,cloud computing platform collects mobile phone fault parameters,and then it builds a Rough sets information table according to these parameters.Second,property weight is computed based on objective weight of feature parameters of each case in the table calculated by Rough sets as well as in the light of expertise.Finally,with the weight and Euclidean distance,the degree of similarity between cases are figured out and then the most similar one from the case base is chased down.This algorithm is based on the date and experience,avoiding the disadvantage of being overly dependent on artificial expertise.This algorithm is based on the date and experience,avoiding the disadvantage of being overly dependent on artificial expertise.The simulation shows the effectiveness of the algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222