检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林路[1] 李锋[2] 朱力行[3] HARDLE Wolfgang Karl
机构地区:[1]山东大学金融研究院,济南250100 [2]郑州大学数学与统计学院,郑州450001 [3]香港浸会大学数学系 [4]洪堡大学应用统计与经济研究中心
出 处:《系统科学与数学》2015年第12期1383-1401,共19页Journal of Systems Science and Mathematical Sciences
基 金:国家自然科学基金项目(11171188,11571204,U1404104,11231005);河南省教育厅基础研究计划项目(14A110015);香港研究基金委员会项目;德国科学基金(CRC649)金融风险项目资助课题
摘 要:在无风险资产和有风险证券的离散时间资产定价问题中,常用包含相关的随机成分和非随机成分的增量过程模型来表示.受此启发,文章提出了一类融合了非随机和随机成分的半参数回归模型.与经典的回归模型不同,在此模型中均值回归函数包含了方差部分,并且模型变量与某个状态变量有关联,因此模型更具有特定的经济意义.文中的一个例子解释了GARCH-M模型与现有的广义漂移模型不能包含本文中所提出的模型.文章还表明,虽然增量过程只是两个部分的加权和,但模型的统计推断不能够简单地通过两个独立系统来完成.文章研究了估计量的渐近理论性质,并通过蒙特卡洛模拟考察了估计量的小样本性质.最后利用中国金融年鉴2004-2005的数据分析了中国金融市场的财富增量过程.Motivated by increment process modeling for two correlated random and non-random systems from a discrete-time asset pricing with both risk free asset and risky security,we propose a class of semiparametric regressions for a combination of a non-random and a random system.Unlike classical regressions,mean regression functions in the new model contain variance components and the model variables are related to a state variable,for which certain economic interpretation can be made.A motivating example explains why a GARCH-M and existing general diffusion models cannot cover the proposed models.Further,we show that statistical inference for the increment process cannot be simply dealt with via two separate systems although the increment process is a weighted sum of the two systems.We further investigate the asymptotics of the estimators.Monte Carlo simulations are conducted to examine finite-sample performance,and a real dataset published in Almanac of China's Finance and Banking(2004 and 2005) is analyzed for illustration about the increment process of wealth in financial market of China from 2003 to 2004.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.44.46