检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学道路与铁道工程国家重点实验室,上海201804 [2]中铁第四勘察设计院集团有限公司,湖北武汉430063 [3]重庆市交通规划研究院,重庆400020
出 处:《城市交通》2015年第6期61-64,共4页Urban Transport of China
摘 要:现有城市轨道交通车站客流吸引范围划分方法大多未考虑相邻车站间的重叠区域,导致车站客流预测值偏大。为了提高车站客流预测的准确性,考虑中间站、首末站、换乘站,针对不同相邻车站类型提出客流分配量计算公式。基于此构建轨道交通车站客流吸引范围重叠区域划分模型,并采用日本东京都城市轨道交通车站的相关数据标定模型参数。最后,以上海市轨道交通11号线安亭站及相邻的兆丰路站和汽车城站为例进行模型验证,结果显示精确度为78.6%。指出产生误差的原因可能在于上海市与东京都的差异以及交通小区数量过少。Most of existing methods for partition of urban rail transit station passenger attraction zones have not taken into account the overlap between neighboring stations, resulting in overestimation of passenger flows at stations. To improve the forecasting accuracy, this paper considers intermediate stations, terminal stations, and transfer stations, and introduce ridership assignment formulations for different types of neighboring stations. Accordingly, this paper develops overlapping region partition model for passenger attraction zones within rail transit stations, and then, estimate key parameters with using Tokyo Prefecture data, Japan. Case study of Anting Station and its neighboring Zhaofeng Road Station and Shanghai International Automobile City Station along Shanghai Metro Line 11 reveals that the forecasting accuracy of proposed model reaches at 78.6%. Moreover, the causes of error, likely, inappropriate parameter estimation due to the differences between Shanghai Municipality and Tokyo Prefecture and the insufficient traffic zones, are also discussed.
关 键 词:城市轨道交通 客流预测 车站客流吸引范围 重叠区域划分模型
分 类 号:U293.13[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117