装备体系多阶段任务可靠性高效解析算法  被引量:4

Research on phased mission based efficient reliability evaluation algorithm for equipment system of systems

在线阅读下载全文

作  者:钟季龙 郭基联[1] 王卓健[1] 邵帅[1] 

机构地区:[1]空军工程大学航空航天工程学院,陕西西安710038

出  处:《系统工程与电子技术》2016年第1期232-238,共7页Systems Engineering and Electronics

基  金:国家自然科学基金(51201182);陕西省软科学技术基金(2011KRM122;2014KRM35)资助课题

摘  要:体系作战任务可靠性的实时评估是未来作战的必然要求。为了实时计算装备体系多阶段任务可靠性,基于k/n(G)表决模型,设计了一种考虑冗余的可靠度高效解析算法。在体系结构分析及任务概述基础上,建立了冗余故障树以及由冗余故障树转化的二元决策图(binary decision diagram,BDD)模型。针对传统可靠性解析计算算法复杂度高的问题,本文利用递归算法改进了k/n(G)表决模型的计算过程,提高了计算效率。以航空装备体系远程目标打击任务为例,数值计算表明,本文的改进解析算法有效得出了体系多阶段任务可靠度计算结果,且相比传统算法运算效率得到显著提高,有利于应用到体系作战任务可靠度实时计算评估,指导任务统筹和规划。The reliability evaluation for systematic fight mission in real time is an inevitably demand of the future wars.In order to solve the computational problem of the equipment system reliability in real time in the phased mission process,an efficient analytical algorithm based on the k/n(G)redundancy model for reliability evaluation is designed.Through the structural analysis of the equipment system and the mission overview,a binary decision diagram(BDD)model is proposed,which is transformed from the redundant fault tree.As for high computational complexity of the traditional method,a more effective algorithm on the basis of the recursive algorithm is designed.Taking the remote target attack mission of the aviation equipment system for instance,the simulation results indicate that the effective results of the phased mission reliability are obtained by using the proposed method.And the results show that the computational efficiency of the proposed algorithm is significantly improved compared with the traditional algorithm.It is applicable for the computational analysis of reliability of the large-scale systematic fight mission in real time and further direct mission plan.

关 键 词:多阶段任务系统 装备体系 k/n(G)模型 高效解析算法 

分 类 号:V37[航空宇航科学与技术—航空宇航推进理论与工程] O241.5[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象