机构地区:[1]Centre for Bioengineering and Biotechnology, China University of Petroleum (East China)
出 处:《Chinese Physics B》2016年第1期299-305,共7页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.21373270 and 11504431);the Fundamental Research Funds for Central Universities of China(Grant No.15CX02025A)
摘 要:Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-fl nanostructures through self-assembly. The self-assembly process and the resultant peptide nanos- tructures are not only related to neurodegenerative diseases but also provide inspiration for the development of novel bionanomaterials. Both experimental and theoretical studies on peptide self-assembly have shown that the self-assembly process spans multiple time and length scales and is hierarchical, β-sheet self-assembly consists of three sub-processes from the microscopic to the mesoscopic level: β-sheet locking, lateral stacking, and morphological transformation. De- tailed atomistic simulation studies have provided insight into the early stages of peptide nanostructure formation and the interplay between different non-covalent interactions at the microscopic level. This review gives a brief introduction of the hierarchical peptide self-assembly process and focuses on the roles of various non-covalent interactions in the sub-processes based on recent simulation, experimental, and theoretical studies.Under appropriate physicochemical conditions, short peptide fragments and their synthetic mimics have been shown to form elongated cross-fl nanostructures through self-assembly. The self-assembly process and the resultant peptide nanos- tructures are not only related to neurodegenerative diseases but also provide inspiration for the development of novel bionanomaterials. Both experimental and theoretical studies on peptide self-assembly have shown that the self-assembly process spans multiple time and length scales and is hierarchical, β-sheet self-assembly consists of three sub-processes from the microscopic to the mesoscopic level: β-sheet locking, lateral stacking, and morphological transformation. De- tailed atomistic simulation studies have provided insight into the early stages of peptide nanostructure formation and the interplay between different non-covalent interactions at the microscopic level. This review gives a brief introduction of the hierarchical peptide self-assembly process and focuses on the roles of various non-covalent interactions in the sub-processes based on recent simulation, experimental, and theoretical studies.
关 键 词:PEPTIDE SELF-ASSEMBLY hierarchical process NANOSTRUCTURES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...