On Frankl and Fredi's Conjecture for 3-uniform Hypergraphs  

On Frankl and Fredi's Conjecture for 3-uniform Hypergraphs

在线阅读下载全文

作  者:Qing-song TANG Hao PENG Cai-ling WANG Yue-jian PENG 

机构地区:[1]College of Sciences,Northeastern University [2]School of Mathematics,Jilin University [3]College of Mathematics,Hunan University

出  处:《Acta Mathematicae Applicatae Sinica》2016年第1期95-112,共18页应用数学学报(英文版)

基  金:Supported by Chinese Universities Scientic Fund(No.N140504004);the National Natural Science Foundation of China(No.11271116)

摘  要:Frankl and Füredi in [1] conjectured that the r-graph with m edges formed by taking the first m sets in the colex ordering of N^(r) has the largest Lagrangian of all r-graphs with m edges.Denote this r-graph by Cr,m and the Lagrangian of a hypergraph by λ(G).In this paper,we first show that if(3^t-1) ≤m〈(3^t),G is a left-compressed 3-graph with m edges and on vertex set[t],the triple with minimum colex ordering in G^c is(t — 2 — i)(t — 2)t,then λ(G) ≤λ(C3,m).As an implication,the conjecture of Frankl and Fiiredi is true for(3^t)-6≤m≤(3^t).Frankl and Füredi in [1] conjectured that the r-graph with m edges formed by taking the first m sets in the colex ordering of N^(r) has the largest Lagrangian of all r-graphs with m edges.Denote this r-graph by Cr,m and the Lagrangian of a hypergraph by λ(G).In this paper,we first show that if(3^t-1) ≤m〈(3^t),G is a left-compressed 3-graph with m edges and on vertex set[t],the triple with minimum colex ordering in G^c is(t — 2 — i)(t — 2)t,then λ(G) ≤λ(C3,m).As an implication,the conjecture of Frankl and Fiiredi is true for(3^t)-6≤m≤(3^t).

关 键 词:Colex ordering Lagrangians of r-graphs extremal problems in combinatorics 

分 类 号:O157.5[理学—数学] O171[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象