检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学电子信息工程学院,安徽合肥230601
出 处:《安徽大学学报(自然科学版)》2016年第1期50-58,共9页Journal of Anhui University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61172127);安徽省自然科学基金资助项目(1408085MF121)
摘 要:在卫星传感器获得的遥感图像中,由于受气候影响,图像可能存在被云雾噪声覆盖的区域.提出一种基于对偶树复小波变换的薄云去除方法,利用该变换将含云遥感图像分解成高频和低频成分,通过对高频补偿和低频抑制处理,有效去除遥感图像中的薄云,恢复云覆盖区域的地物信息.实验结果表明,该方法优于常用的薄云去除方法,在去除薄云的同时能有效恢复云覆盖下的地物信息,此效果源于对偶树复小波变换具有的近似平移不变性和良好的方向选择性.Remote sensing images obtained by satellite sensors are often covered with noise of clouds which result from the impact of climate.A thin cloud removal algorithm based on dual-tree complex wavelet transform was proposed in this paper.Remote sensing image covered with clouds was decomposed into high and low frequency components by using this transformation firstly.Then the high frequency components were compensated and the low frequency components were suppressed.The thin cloud on remote sensing image was effectively removed and the ground information in the cloud covered areas was recovered.Experiment results showed that,due to the performances of approximate translation invariance and good directional selectivity of dual-tree complex wavelet transform,the algorithm proposed in this paper was superior to the commonly used algorithms for thin cloud removal,and it could effectively restore ground information in the cloud covered areas.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90