检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北林业大学机电工程学院,黑龙江哈尔滨150040
出 处:《哈尔滨工程大学学报》2015年第12期1632-1637,共6页Journal of Harbin Engineering University
基 金:黑龙江省自然科学基金面上资助项目(C201337);哈尔滨市科技创新人才研究专项资金资助项目(2014RFQXJ127);黑龙江省博士后科研启动金资助项目(LBH-Q14006);国家自然科学基金资助项目(31470714);中央高校基本科研业务费专项资金资助项目(2572014CB14)
摘 要:为提高图像分割的精度获取边缘更佳的分割图,提出结合无关曲率方向的边缘函数与无需重新初始化符号距离函数的基于C-V(Chan-Vese)模型的快速分割算法。针对在图像的同质区域中基于水平集的C-V模型不能正确分割出目标轮廓的缺陷提出优化方法。改进算法不依赖于水平集梯度信息进行活动轮廓曲线的演变,引入无关曲率的边缘函数并结合平均曲率运动方程以最小化长度能量项;并且在能量函数中增加了内能泛函项,以简化模型在局部需要重新初始化符号函数的步骤,提高运算速度。实验表明新算法能够演化出目标边缘曲线,准确分割图像,且运行耗时显著减少,收敛速度近似为几何活动轮廓C-V模型的1.2倍。To improve image segmentation accuracy with better edge details, a new fast method is proposed based on the Chan-Vese (C-V) model. It combines an edge function and a signed distance function. The edge function is directionally curvature-independent, and the energy function evolves without re-initializing the signed distance function. The improved method extends the C-V model, so as to properly extract contours from given images in homogeneous areas. It does not use the local gradient information of level sets while evolving contours, instead it adds a curvature-independent directional edge function and uses mean curvature motion to minimize length energy. The internal energy function term of the energy function is increased to simplify and speed up the model when it needs to re-initialize the signed distance function. Experiments show that the new algorithm nicely evolves wanted target edge contours for accurate image segmentation, and also reduces time significantly, approximately 1.2 times faster than the geometric active contour C-V model.
关 键 词:图像分割 CHAN-VESE模型 水平集方法 边缘函数 能量泛函 几何活动轮廓模型
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.157.160