检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱焯炜[1,2] 阙立志[1] 陈国庆[1] 徐瑞煜[1] 朱拓[3]
机构地区:[1]江南大学理学院,江苏无锡214122 [2]江南大学物联网工程学院,江苏无锡214122 [3]河海大学能源与电气学院,江苏南京210098
出 处:《光谱学与光谱分析》2015年第9期2573-2577,共5页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(61178032;61378037);江苏省科技支撑计划(社会发展)项目(BE2011828)资助
摘 要:以某清香型白酒为研究对象,将三维荧光光谱技术与平行因子分析方法(parallel factor analysis,PARAFAC)、BP神经网络结合,建立清香型白酒年份鉴别模型。首先,利用FLS920全功能型荧光光谱仪测量获得不同年份白酒的三维荧光光谱数据,对激发发射三维矩阵进行三线性分解,得到四个主成分对应的浓度得分和激发-发射光谱轮廓图。将这4个浓度得分作为BP神经网络的输入,建立10,20和30年份白酒的鉴别模型。随机选取每个年份的10个样本,共30个样本组成测试集,剩余的90个白酒样本组成训练集建立训练模型。据此对未知样品进行预测,其预测正确率分别为90%,100%和100%。同时将该方法与多维偏最小二乘判别分析法(multi-way partial least squares discriminant analysis,NPLS-DA)进行了比较。研究结果表明:平行因子结合神经网络的判别模型具有更强的预测能力,该方法能够有效提取年份白酒的特征光谱信息,同时又降低了神经网络输入变量的维数,取得较好的鉴别效果。Three-dimensional fluorescence spectroscopy coupled with parallel factor analysis and neural network was applied to the year discrimination of mild aroma Chinese liquors.The excitation-emission fluorescence matrices (EEMs)of 120 samples with various years were measured by FLS920 fluorescence spectrometer.The trilinear decomposition of the data array was per-formed and the loading scores of and the excitation-emission profiles of four components were also obtained.The scores were employed as the inputs of the BP neural networks and the PARAFAC-BP identification model was constructed.10 samples were collected from 10,20 and 30 years of liquors respectively,and 30 samples were selected as the test sets.The remaining 90 sam-ples were used as the training sets to build the training model.The year prediction of unknown samples was also carried out,and the prediction accuracy was 90%,100% and 100%,respectively.Meanwhile,the discrimination analysis method and the multi-way partial least squares discriminant analysis were compared,namely PARAFAC-BP and NPLS-DA.The results indicated that parallel factor combined with the neural network (PARAFAC-BP)has higher prediction accuracy.The proposed method can ef-fectively extract the spectral characteristics,and also reduce the dimension of the input variables of neural network.A good year discrimination result was finally achieved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.35.244