中压馈线理论线损率标杆值的优化设计方法及应用  被引量:19

An Optimal Design Method of Theoretical Line Loss Rate Benchmark Value for Medium Voltage Feeders and Its Application

在线阅读下载全文

作  者:安晓华[1] 欧阳森[1] 冯天瑞[1] 吴裕生[1] 

机构地区:[1]广东省绿色能源技术重点实验室(华南理工大学电力学院),广东省广州市510640

出  处:《电网技术》2016年第1期199-206,共8页Power System Technology

基  金:国家自然科学基金重点资助项目(51377060);国家自然科学基金青年基金(61104181)~~

摘  要:当前配电网馈线的理论线损率标杆值主要靠历史完成值或管理经验等因素设置,缺乏理论依据,科学性不强,为此提出一种基于模糊聚类?基态修正的中压配电网馈线理论线损率标杆值的优化设计方法。首先,从线损贡献率和数据获取性2个角度出发,设计一套中压配电网馈线的线损率三维指标体系;然后,利用模糊聚类原理对馈线进行有效性模糊聚类,确定各类的基态馈线,并采用等值电阻法和统计计算法,分类对非基态馈线的理论线损率进行修正计算;最后,建立求解理论线损率标杆值的优化模型,模型以各类馈线降损空间最大为目标,以馈线运维管理水平、设备构架条件和概率分布为约束。以广东省某市供电企业的中压配电网馈线为实例验证方法的有效性和适用性。Currently, benchmark value setting of theoretical line loss rate for medium voltage(MV) feeders mainly depends on historical value, management experience or other factors, lacking theoretical basis. Thus, this paper proposes an optimal design method of benchmark value, based on fuzzy clustering and correction algorithm of ground state line. Firstly, from aspect of line loss contribution rate and data acquisition, a three-dimensional index system for feeders in MV distribution network is established. Secondly, fuzzy clustering with validity on the feeders is carried out and ground state feeder chosen. With help of equivalent resistance method and statistical method, theoretical line loss rate is calculated. Finally, optimal model of theoretical line loss rate benchmark value is established to obtain benchmark value. This model sets goal of making the largest feeder loss reduction space. Its constraints are operation management level, equipment frame condition and probability distribution of theoretical line loss rate of feeders. Analysis of an example, containing feeders from a city power supply enterprise in Guangdong Province, verified its scientific validity and universal applicability of the proposed method.

关 键 词:理论线损率标杆值 模糊聚类 基态修正算法 管理线损率系数 等值电阻法 统计计算法 

分 类 号:TM72[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象