基于MapReduce的支持向量机态势评估算法  被引量:3

Support vector machine situation assessment algorithm based on MapReduce

在线阅读下载全文

作  者:陈珍[1] 夏靖波[1] 杨娟 韦泽鲲 

机构地区:[1]空军工程大学信息与导航学院 [2]93010部队89分队

出  处:《计算机应用》2016年第1期133-137,共5页journal of Computer Applications

基  金:陕西省科技计划自然基金重点项目(2012JZ8005)~~

摘  要:支持向量机(SVM)可以解决传统态势评估算法无法兼顾的"维数灾难""过学习"及"非线性"等难题,却无法应对大规模样本的问题。为了有效应对态势评估中的大数据处理挑战,提出了一种基于MapReduce的SVM(MR-SVM)态势评估算法。该算法利用MapReduce并行计算模型,同时结合SVM可并行化的特点,通过设计主要的map函数和reduce函数,实现了SVM算法的并行化和主要参数的选取。在搭建的Hadoop平台上对改进算法与原算法进行了比较验证:对于小规模样本,改进算法反而"化简为繁",不比原算法效率高;但在大规模样本的处理上,原算法的训练时间随样本规模呈指数型增长,而改进算法的训练时间随样本规模并没有特别明显的增幅,体现出了较好的时间优势。实验结果表明,基于MapReduce改进的SVM很好地弥补了原算法"样本规模"的短板,更适用于大数据环境下的网络态势评估。Support Vector Machine( SVM) has good performance in dealing with dimensionality disaster, over fitting and nonlinearity, which other traditional situation assessment algorithms does not have. However SVM has low efficiency when dealing with large-scale data. To effectively confront the challenge of handling big data, a MapReduce-based SVM( MR-SVM)situation assessment algorithm was proposed. Considering the characteristics of SVM algorithm, the parallelization and parameter selection of SVM based on MapReduce programming was implemented by designing procedures of map function and reduce function. The performances of MR-SVM and SVM were compared on Hadoop platform, MR-SVM had lower efficiency than SVM when dealing with small-scale data, but much better performance when dealing with large-scale data. SVM had an exponential growth on training time with the growth of data scalability while MR-SVM has slow growth. The experiment results show that MR-SVM solves the problem of data scalability, therefore it is suitable for situation assessment in big data environment.

关 键 词:支持向量机 态势评估 MAPREDUCE HADOOP 并行化 

分 类 号:TP393[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象