基于相似度拓展与兴趣度缩放的协同过滤算法  被引量:2

Collaborative Filtering Algorithm Based on Similarity Extension and Interest Degree Scaling

在线阅读下载全文

作  者:夏平平[1] 帅建梅[1] 

机构地区:[1]中国科学技术大学自动化系,合肥230027

出  处:《计算机工程》2016年第1期199-202,209,共5页Computer Engineering

摘  要:现有的协同过滤算法未考虑用户浏览记录中用户对项目的潜在厌恶信息,忽视新老用户对不同流行度项目的兴趣差异。为此,提出一种改进的协同过滤算法。从用户浏览记录中提取用户对项目的潜在厌恶信息,计算项目之间被用户厌恶的相似度,将其与项目之间被用户喜欢的相似度结合,得到项目的综合相似度。在此基础上用偏好因子对用户的兴趣度进行缩放,该因子能够反映新老用户对不同流行度项目的倾向性。实验结果表明,该算法在不明显增加时空复杂度的前提下,可有效提高推荐准确率、召回率和覆盖率。The existing Collaborative Filtering(CF) recommendation algorithms are not taken into account the latent information of users aversion to items in the users browsing history and the difference between old users interests and new users' interests in items of different popularity.To solve the problem,this paper proposes a collaborative filtering algorithm based on similarity extension and interest degree scaling.It extracts the latent information of users aversion to items from the users' browsing history to calculate the items' similarity of user' aversion,and combines it with items' similarity of users favorite to get the integrated similarity of items.On the basis of that,the algorithm scales the users interest degree to the items by preference factor which can reflect the difference between new users' interests and old users' interests in both popular items and unpopular items.Experimental results show that this algorithm improves the recommendation precision,recall rate and coverage,without obviously increasing in time-space complexity.

关 键 词:协同过滤 潜在厌恶信息 偏好因子 相似度拓展 兴趣度缩放 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象