检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家数字交换系统工程技术研究中心,河南郑州450002
出 处:《通信学报》2016年第1期198-206,共9页Journal on Communications
基 金:国家重点基础研究发展计划("973"计划)基金资助项目(No.2012CB315901);国家高技术研究发展计划("863"计划)基金资助项目(No.2011AA01AA103)~~
摘 要:针对离散评分不能合理表达用户观点和传统协同过滤算法存在稀疏性等问题,借鉴年龄模糊模型,提出了梯形模糊评分模型。该模型将离散评分模糊化为梯形模糊数,考虑了评分模糊性和信息量,通过梯形模糊数来计算用户相似度,据此设计了协同过滤算法,并证明了该算法是传统协同过滤算法在模糊域的扩展。实验表明,该算法在数据稀疏且用户数远多于项目数时性能突出,并且算法运行时间远小于传统协同过滤算法。In order to reflect the actual case of human decisions and solve the data sparseness problem of traditional collaborative filtering recommendation algorithm, a trapezoid fuzzy model based on age fuzzy model was proposed. In this model, crisp point was fuzzified into trapezoid fuzzy number and the fuzziness and information of users' grade was taken into account when calculating user's similarity by trapezoid fuzzy number. Based on this model, the user fuzzy similarity-based collaborative filtering recommendation algorithm was designed. The algorithm was proved to be an extension of traditional collaborative filtering algorithm in fuzzy fields. The experimental results show that, the proposed algorithm performs better when implemented in the sparse dataset with more user than item, and its running time is much less than traditional collaborative filtering algorithm.
关 键 词:协同过滤 梯形模糊评分模型 模糊距离 模糊相似度
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33