复杂装备退化状态早期识别方法研究  被引量:1

Research on State Recognition Algorithm of Complicated Equipment with Early Performance Degradation

在线阅读下载全文

作  者:邓力[1] 徐廷学[1] 肖楚琬[2] 

机构地区:[1]海军航空工程学院兵器科学与技术系,山东烟台264001 [2]海军航空工程学院接改装训练大队,山东烟台264001

出  处:《计算机测量与控制》2016年第1期137-142,共6页Computer Measurement &Control

基  金:总装预研基金项目资助(9140A27020212JB 14311)

摘  要:针对复杂装备早期退化状态难以识别的问题,提出一种将相关向量机(RVM)和Dezert-Smarandache理论(DSmT)相结合的多特征融合决策识别方法;该方法首先分别采用时域分析法和时频域小波包变换法对装备的状态特征进行提取;之后将状态特征向量输入RVM模型中完成对状态属性的判定并获得各种状态模式的基本置信度分配;最后依据DSmT的PCR6规则对含有冲突信息的多个识别结果进行决策融合,得到早期退化状态的最终识别结果;在对某航空机电设备的实例应用中表明,该方法可以有效地解决信息高冲突条件下的早期退化状态识别问题,结果可靠准确。Aiming to the situation in which state recognition of complicated equipment with early performance degradation is hard to realize, a new fusion decision-making method based on multiple features extraction is presented, which compounds with RVM and DSmT. Firstly,a method, based on time domain analysis and wavelet packet decomposition, is used to extract the signal's feature separately; secondly, basic belief assignment function is constructed based on the output of the RVM model; lastly, PCR6 combination rule of DSmT is used to combine the different conflicting evidences and make the final decision. The application in a certain aerial electromechanical device suggests the approach is available to solve the problem of high-conflict information fusion when early vibration fault happens,and the recognition results are effective and reliable.

关 键 词:复杂装备 性能退化 状态识别 相关向量机 DEZERT-SMARANDACHE理论 

分 类 号:TJ07[兵器科学与技术—兵器发射理论与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象