农产品冷链HACCP管理体系知识建模与推理  被引量:22

HACCP knowledge modeling and reasoning for agricultural products cold-chain logistics

在线阅读下载全文

作  者:牟向伟[1] 陈燕[1] 曹妍[1] 

机构地区:[1]大连海事大学交通运输管理学院,大连116026

出  处:《农业工程学报》2016年第2期300-308,共9页Transactions of the Chinese Society of Agricultural Engineering

基  金:中国博士后科学基金资助项目(2014M551063);辽宁省教育厅科技研究项目资助(L2014203);辽宁省社会科学规划基金项目(L14BGL012);中央高校基本科研业务费专项资金资助(3132015050)联合资助

摘  要:为了保障冷链上农产品的食用安全性和品质以及高效可靠地冷链监控管理。该文在冷链一般性业务流程与HACCP管理体系的基础之上,提出一种基于描述逻辑SROIQ(D)的冷链HACCP知识语义模型CC-HACCP,使用SWRL规则语言描述业务逻辑规则,增强了该模型的知识自动推理能力。以生食牡蛎肉的冷链HACCP管理知识体系为例,使用OWL 2 DL语言对CC-HACCP描述的语义知识进行实现,并且通过知识校验、实例识别与规则推理等功能,完善了整体冷链的HACCP计划,试验结果表明,通过对HACCP冷链安全管理知识的建模与推理,冷链各环节之间进行有效的完善和共享。因此,HACCP知识模型的应用对多方参与的农产品冷链HACCP安全监控管理的整合和完善具有积极的意义,有助于提高农产品冷链物流安全监控管理的效率,从而保障农产品食用安全性和品质。In order to ensure the safety and quality of agricultural products, most agricultural products need to use cold chain logistics in a low temperature environment for transportation, processing and storage. Recently, most studies focus on the safety monitoring and management of a certain single step of cold chain, but a highly effective and reliable cold chain monitoring management needs to realize the knowledge expression, understanding and sharing among multiple agents and business segments in the whole cold chain. The cold chain HACCP(hazard analysis critical control point) knowledge semantic model(CC-HACCP) based on Description Logic SROIQ(D) is proposed to describe the semantic information of the cold chain logistics business and the HACCP management. This model mainly describes the semantic elements such as core concepts, constraints, object attributes, data attributes and attribute characteristics, which are correlated with the domain of cold-chain logistics HACCP management system, and meanwhile, CC-HACCP also uses SWRL rule language to enhance the knowledge reasoning ability. In the experiment, an instance of CC-HACCP ontology was built to describe the business knowledge and rules for the agricultural product cold-chain logistics about "eating oyster", in which the HACCP knowledge sharing requirement between the instances of "step_of_live_oysters_checkup_and_acceptance" and "step_of_live_oyster_transportation" was quite obvious. The model of CC-HACCP was rewritten as an ontology based on semantic web language OWL 2 DL. Through the functions of knowledge checking, case identification and rule reasoning, the HACCP plans in the raw material suppliers, cold chain logistics service providers and production processors were developed, and the new "concept-instance" relationships were automatically identified. For example, "step_of_live_oyster_transportation" was an instance of the concept of cold chain step(CC_Step); after reasoning by reasoning engine, it was also identified a

关 键 词:农产品 质量控制 管理 冷链 本体 HACCP 知识建模 知识推理 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象