基于声音信号的核主元故障诊断法  被引量:4

Research on KPCA Fault Diagnosis Method Based on Sound Signal

在线阅读下载全文

作  者:吴胜强[1] 姜万录[2] 赵利颇[1] 

机构地区:[1]邢台职业技术学院机电工程系,河北邢台054035 [2]燕山大学机械工程学院,河北秦皇岛066004

出  处:《机床与液压》2016年第1期184-187,共4页Machine Tool & Hydraulics

基  金:河北省高等学校科学技术研究重点项目(ZD20131078)

摘  要:针对振动诊断法的局限性,提出了基于声音信号KPCA的故障诊断方法。介绍了核主元分析法的基本原理及其用于故障检测的基本步骤,给出了声音信号详细预处理过程,提取了由时域、频域和时频域参量共同构成的多域特征向量,利用核主元分析法进行了故障诊断。对轴向柱塞泵进行了试验,结果表明:利用声音信号KPCA的故障诊断法是有效的,能克服基于振动信号故障诊断法的不足。To resolve the deficiency of vibration fault diagnosis method,it was proposed that kernel principal component analysis( KPCA) fault diagnosis method based on sound signal. The basic theory of KPCA and its basic procedures for fault detection were introduced and sound signal pre-processing was depicted,multi-domain feature vector was extracted from time,time-frequency and frequency domain,faults were diagnosed with KPCA method. The new KPCA fault diagnosis method based on sound signal processing was tested on axial piston pump,the result shows that this method is effective and it can overcome the deficiencies of fault diagnosis method based on vibration signal.

关 键 词:故障诊断 KPCA 声音信号 液压泵 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象