检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Tngji University, Shanghai 200092, China College of Information Technology, Shanghai Ocean University Shanghai 201306, China [2]Department of Mathematics, Changshu Institute of Technology Changshu, Jiangsu 215500, China
出 处:《Algebra Colloquium》2015年第4期711-720,共10页代数集刊(英文版)
基 金:Supported by the National Natural Science Foundation of China (10571119, 10671027, 11271056, 11271284), the Foundation of Jiangsu Educational Committee, the Fundamental Research Funds for the Central Universities and the Youth Scholars of Shanghai Higher Education Institutions (Gr~nt No.ZZHY14026).
摘 要:In this paper, we study Leibniz algebras with a non-degenerate Leibniz- symmetric fl-invariant bilinear form B, such a pair (g, B) is called a quadratic Leibniz algebra. Our first result generalizes the notion of double extensions to quadratic Leibniz algebras. This notion was introduced by Medina and Revoy to study quadratic Lie alge- bras. In the second theorem, we give a sufficient condition for a quadratic Leibniz algebra to be a quadratic Leibniz algebra by double extension.In this paper, we study Leibniz algebras with a non-degenerate Leibniz- symmetric fl-invariant bilinear form B, such a pair (g, B) is called a quadratic Leibniz algebra. Our first result generalizes the notion of double extensions to quadratic Leibniz algebras. This notion was introduced by Medina and Revoy to study quadratic Lie alge- bras. In the second theorem, we give a sufficient condition for a quadratic Leibniz algebra to be a quadratic Leibniz algebra by double extension.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.142.93