检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛大学复杂性科学研究所,山东青岛266071
出 处:《青岛大学学报(工程技术版)》2015年第4期9-15,共7页Journal of Qingdao University(Engineering & Technology Edition)
基 金:国家自然科学基金资助项目(61174033);山东省自然科学基金资助项目(ZR2011FM006)
摘 要:为了解决区间时变时滞系统的稳定性问题,本研究通过使用合适的L-K泛函,推导方式上采用Wirtinger积分不等式和改进的Jensen型不等式相结合的方法,得到了基于线性矩阵不等式LMI的区间时变时滞系统稳定性的新判据,并使用Matlab求解,同时给出数值例子进行验证。验证结果表明,当d=0.3和d未知时,本文结果与文献[11]和[15]相比具有更小的保守性;当d=0.1时,与文献[14]相比保守性较大,但当时滞导数d=0.3,d=0.5,d=0.8时,与文献[14]相比,本文方法能获得更好的时滞上界。说明本文结果在时滞导数项比较大时与当前一些方法相比具有较好的优越性。In order to solve the problem of the stability of time varying delay systems, this paper provides a combined method of Wirtinger-based integral inequality and improved Jensen type inequality, by using a suitable L-K Functional. A new criterion for stability of time varying delay systems is obtained in terms of LMIs. Numerical examples are given to verify the results by using matlab. When d = 0.3 and d is unknown,the results of this paper is less conservative than those in [11] and [15]. When d=0.1, compared with the literature [14], our resultis relatively conservative. But when d=0.3, d=0.5,d=0.8, compared with the literature [14], the proposed method can obtain better upper bounds of the time-delay. It is showed that the results of this paper have good advantages in comparison with the current methods when the bound of time delay derivative term is relatively large.
关 键 词:时滞系统 Wirtinger型积分不等式 线性矩阵不等式(LMI) 稳定性分析
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117