检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《小型微型计算机系统》2016年第2期275-280,共6页Journal of Chinese Computer Systems
基 金:上海智能家居大规模物联共性技术工程中心项目(GCZX14014)资助;沪江基金研究基地专项项目(C14001)资助;国家自然科学基金项目(61003031)资助
摘 要:当前,互联网应用已渗透到各行各业,尤其在金融、电子商务等领域,网上交易变得越来越频繁,并在逐渐取代传统交易模式.然而,由于网络交易的开放性和灵活性,使得网络交易过程难以形成统一的模式,一些网络交易由于过程的繁琐导致一些商业机会的错失.为简化交易过程,提高网络交易的可靠性,本文提出一种频繁交易过程模式挖掘算法.利用所提算法可以从多个不同企业的事件日志中挖掘频繁交易过程.针对挖掘出的频繁交易过程,通过判断挖掘出的过程模型与事件日志是否一致,来确保挖掘出的模式的正确性和有效性.同时,将挖掘出的top-k个跨企业过程频繁模式向用户推荐,供用户选择,以更好地提升用户体验.Nowadays, application of the internet has penetrated into all walks of life, especially in the field of finance, e-commerce and etc. Online business has become more and more frequent and is gradually replacing the traditional business. However, it is difficult to form a unified online business pattern due to the openness and flexibility of online transactions. Some enterprises lost trade opportuni- ties because of the complexity of the trading process. To simplify the process and improve the trading reliability, this paper presents a frequent business process pattern mining algorithm, which can mine the frequent business processes from the event log extracted from different enterprises joining the business. To guarantee the correctness and validity of the mined frequent processes, the consistency be- tween processes and the event log is checked after mining. Simultaneously,in order to better improve the user's experience, the top-k frequent process modes are recommended to users.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.199.33