包含非中心电耦极矩的环状非谐振子势场赝自旋对称性的三对角化表示  

Tridiagonal representation with pseudospin symmetry for a noncentral electric dipole and a ring-shaped anharmonic oscillator potential

在线阅读下载全文

作  者:高洁[1] 张民仓[1] 

机构地区:[1]陕西师范大学物理学与信息技术学院,西安710119

出  处:《物理学报》2016年第2期8-15,共8页Acta Physica Sinica

基  金:国家自然科学基金(批准号:14101020155);中央高校基本科研业务费(批准号:GK201402012)资助的课题~~

摘  要:提出了一个包含非中心电耦极矩分量的环状非谐振子势模型,在能够负载Dirac波动算子三对角化表示的完全平方可积L^2空间讨论了这一势场的赝自旋对称性.利用三对角化矩阵方案,使得求解Dirac方程转换为寻求波函数展开系数满足的三项递推关系式.角向波函数和径向波函数分别以Jacobi多项式和Laguerre多项式表示.由径向分量展开系数递推关系式的对角化条件得到束缚态的能量谱。The concepts of pseudospin symmetry in atomic nuclei and spin symmetry in anti-nucleon are reviewed. The exploration for understanding the origin of pseudospin symmetry and its breaking mechanism, and the empirical data supporting the pseudospin symmetry are introduced. A noncentral anharmonic oscillatory potential model is proposed, in which a noncentral electric dipole and a double ring-shaped component are included. The pseudospin symmetry for this potential model is investigated by working on a complete square integrable basis that supports a tridiagonal matrix representation of the Dirac wave operator. Then, solving the Dirac equation is translated into finding solutions of the recursion relation for the expansion coefficients of the wavefunction. The angular/radial wavefunction is written in terms of the Jacobi/Laguerre polynomials. The discrete spectrum of the bound states is obtained by diagonalization Of the radial recursion relation, and the property of energy equation is discussed for showing the exact pseudospin symmetry. Several particular cases obtained by setting the parameters of the potential model to appropriate values are analyzed, and the energy equations are reduced to that of the anharmonic oscillator and that of the ring-shaped non-spherical harmonic oscillator, respectively. Finally, it is pointed out that the exact spin symmetry exists also in this potential model.

关 键 词:非中心电耦极矩 赝自旋对称性 DIRAC方程 三对角化表示 

分 类 号:O571[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象