EDELSTEIN-SUZUKI-TYPE RESULTS FOR SELF-MAPPINGS IN VARIOUS ABSTRACT SPACES WITH APPLICATION TO FUNCTIONAL EQUATIONS  被引量:1

EDELSTEIN-SUZUKI-TYPE RESULTS FOR SELF-MAPPINGS IN VARIOUS ABSTRACT SPACES WITH APPLICATION TO FUNCTIONAL EQUATIONS

在线阅读下载全文

作  者:Stojan RADENOVIC Peyman SALIMI Calogero VETRO Tatjana DOSENOVIC 

机构地区:[1]Faculty of Mathematics and Information Technology Teacher Education, Dong Thap University,CaoLanh City, Dong Thap Province, Viet Nam [2]Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran [3]Universitd degli Studi di Palermo, Dipartimento di Matematica e Informatica,Via Archirafi, 34, 90123 Palermo. llaly [4]Faculty of Technology, University of Novi Sad, Serbia

出  处:《Acta Mathematica Scientia》2016年第1期94-110,共17页数学物理学报(B辑英文版)

基  金:supported by Università degli Studi di Palermo,Local University Project R.S.ex 60%;supported by MNTRRS-174009

摘  要:The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed point results for self-mappings in various abstract spaces. We apply our results to get a bounded solution of a functional equation arising in dynamic programming.The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed point results for self-mappings in various abstract spaces. We apply our results to get a bounded solution of a functional equation arising in dynamic programming.

关 键 词:G-metric space G-cone metric space quasi-metric space fixed point Edel-stein's theorem Suzuki's theorem. 

分 类 号:O175.15[理学—数学] G301[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象