检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学,四川成都610036 [2]广东省公安厅,广东广州510050
出 处:《电子技术应用》2016年第2期14-16,共3页Application of Electronic Technique
摘 要:近年来数据分类技术已经被广泛应用于各类问题中,作为最重要的分类算法之一,K最近邻法(KNN)也被广泛使用。在过去的近50年,人们就如何提高KNN的并行性能做出巨大努力。基于CUDA的KNN并行实现算法——CUKNN算法证明KNN在GPU上的并行实现比在CPU上串行实现的速度提升数十倍,然而,CUDA在实现过程中包含了大量的冗余计算。提出了一种并行冒泡的新型KNN并行算法,并通过OpenCL,在以GPU作为计算核心的异构系统上进行验证,结果显示提出的方法比CUDA快16倍。Recently, data classification techniques have been used to solve many problems. As one of the most popular classifica-tion algorithms, K- Nearest Neighbor( KNN) algorithm has been widely used. Over the past 50 years, many efforts about parallel computing have been made to improve the efficiency of KNN. A new CUDA- based parallel implementation of KNN algorithm called CUKNN has proved that the parallel solution implemented by GPU is dozens of times faster than the serial solution implemented by CPU. However, plenty of redundant computation has been done in CUKNN. This paper proposes a new parallel solution of KNN algorithm which is implemented by parallel bubble sort. Then we evaluate it on GPU- based heterogeneous computing system using OpenCL, and the result shows that the efficiency of our solution has improved 16 times.
关 键 词:KNN GPGPU OPENCL 并行冒泡 并行计算
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63