基于2-TUPLE MADM的众包平台辅助决策设计框架  被引量:2

Crowdsourcing Platform Aided Decision-making Designing Framework Based on 2-Tuple MADM

在线阅读下载全文

作  者:刘颖[1,2] 刘咏梅[1] 

机构地区:[1]中南大学商学院,湖南长沙410083 [2]长沙理工大学经济与管理学院,湖南长沙410015

出  处:《系统工程》2015年第11期153-158,共6页Systems Engineering

基  金:国家创新研究群体科学基金资助项目(71221061);教育部博士点基金资助项目(20110162110065);教育部"新世纪优秀人才"项目(NCET-11-0519);国家自然科学基金资助项目(71271219)

摘  要:随着亚马逊Mechanical Turk和Innocentive等众包平台的增长,劳动力和知识的获取和利用较以前更容易。然而,许多众包平台网站都面临着如何使任务发布者和提供者能够长时间地停留在网站中参与任务,以保持众包平台网站可持续性发展的问题。为解决这一问题,本文利用经典的基于二元语义的多属性决策方法(2-TUPLE Multiple Attribute Decision Method),为众包平台网站构建一个辅助决策模块。该模块的使用,一方面可以帮助提高任务发布者决策的科学性,另一方面为提供者给予适当的信息反馈。通过此种方式,可以提高任务发布者和提供者对于众包平台网站的满意度,从而维持众包平台网站的可持续发展。基于二元语义的多属性决策方法在众包平台中的应用将会对众包平台中的所有组成单元带来利益。Crowdsourcing is gradually becoming important in commercial application. With the growth of crowdsourcing platforms like Amazon Mechanical Turk and InnoCentive, a huge work force and a large knowledge can be easily accessed and utilized. However, many crowdsourcing platform websites face an important problem as to how to make assigners and providers take part in tasks on the website for a long time so as to maintain the sustainable development of crowdsourcing platform website. In order to solve this problem, this paper aims to use 2-tuple multiple attribute decision-making method to construct an aided decision-making module for Crowdsoureing platform website. By using this module, it can not only improve scientifieity of the assigner's decision-making, but also give appropriate information feedback for provkter. This way can also improve the participants' satisfaction with the crowdsourcing platform website and thus maintain the crowdsourcing platform website's sustainable development. The application of 2-tuples MADM to crowdsourcing platform would create many benefits for all the components of crowdsourcing platform website.

关 键 词:众包平台 二元语义多准则决策方法 公平理论 辅助决策 设计框架 

分 类 号:C931[经济管理—管理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象