检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆400065
出 处:《信息与控制》2015年第6期717-721,738,共6页Information and Control
基 金:国家自然科学基金资助项目(60905066);重庆市自然科学基金资助项目(cstc2012jjA1642)
摘 要:目前脑电信号的识别中,特征提取和分类是分开独立完成的.为了简化识别过程和提高识别效果,本文提出一种运用深度信念网络(DBN)进行脑电信号识别的方法.DBN模型由多层RBM(restricted Boltzmann machine)网络和一层BP(backpropagation)网络构成,通过RBM实现对脑电信号的分层特征提取,以确保获得最优特征向量,再由一层BP网络对RBM输出的特征向量进行分类,从而实现脑电信号的识别.本文使用Emotiv脑电采集仪采集的运动想象脑电数据进行实验.实验表明,深度信念网络对粗糙的脑电数据具有强大的特征学习能力,对运动想象脑电信号的识别率优于支持向量机(SVM),简化了脑电识别流程,提高了识别率,为脑—机接口中脑电信号的识别提供了一种新颖的思路.Currently, feature extraction and classification are carried out separately in electroencephalogram (EEG) recognition. To simplify the identification process and improve the classification results, we propose a novel method that applies a deep belief network(DBN) to EEG recognition. Deep belief networks consist of several layers of restricted Bohzmann machines (RBMs) and one layer of a back-propagation network (BP). In the process of EEG recognition, RBNIs are used to extract features from the EEG data to ensure that the most effective feature vectors are obtained. These feature vectors are then classified by the BP network. We collected motor imagery EEG data with an Emotiv EEG acquisition instrument, and used them to design the experiment. The experimental results show that DBNs have a strong ability for feature learning from raw EEG data. The recognition rate of motor imagery EEG data based on a DBN is better than that from a support vector machine (SVM). The proposed method simplifies the EEG recognition process, improves the recognition rate, and provides a novel technique for the brain computer interface(BCI) recognition of EEG signals.
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117