一种幅度信息辅助多伯努利滤波算法  被引量:9

A Multi-Bernoulli Filtering Algorithm Using Amplitude Information

在线阅读下载全文

作  者:袁常顺 王俊[1] 孙进平[1] 孙忠胜[1] 毕严先[1] 

机构地区:[1]北京航空航天大学电子信息工程学院,北京100191

出  处:《电子与信息学报》2016年第2期464-471,共8页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61171122;61201318;61471019;61501011);中央高校基本科研业务费专项资金(YWF-15-GJSYS-068)~~

摘  要:在许多多目标跟踪场景中,目标返回的幅度通常强于虚警杂波返回的幅度。通过建立更加准确的包含幅度信息的目标和虚警杂波似然函数,可提高多目标估计精度。该文提出一种基于随机有限集的幅度信息辅助多伯努利滤波(Amplitude Information Assistant Multi-Bernoulli Filter,AIA-MBer F)算法。该算法通过建立幅度似然函数将幅度信息引入到多伯努利滤波的更新过程中,并给出针对线性和非线性模型的高斯混合(Gaussian Mixture,GM)和序贯蒙特卡洛(Sequential Monte Carlo,SMC)实现方法。仿真结果表明,该滤波算法相比于传统多伯努利滤波(Multi-Bernoulli Filter,MBer F)无论GM还是SMC实现都可获得更加准确稳定的目标数和对应的目标状态估计。In many multi-target tracking scenarios, the amplitude of target returns are stronger than those coming from false alarms. This amplitude information can be used to improve the multi-target state estimation by obtaining more accurate target and false-alarm likelihoods. In this paper, a novel multi-Bernoulli filtering algorithm is proposed, which is based on the random finite set and incorporate the amplitude information. The amplitude likelihood functions are derived to incorporate the amplitude information into the multi-Bernoulli filter in the update step. In addition, a Gaussian Mixture(GM) implementation for the linear model and a Sequential Monte Carlo(SMC) implementation for the non-linear model are proposed. Simulation results for Gaussian Mixture and Sequential Monte Carlo implementations show that the proposed filter demonstrates a significant improvement than conventional multi-Bernoulli filter in the estimation accuracy of both the number of targets and their states.

关 键 词:多目标跟踪 随机有限集 幅度信息 多伯努利滤波 

分 类 号:TN953[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象