检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:XU Xin YAN Gui Ying ZHANG Yao
机构地区:[1]Academy of Mathematics and Systems Science, Chinese Academy of Sciences
出 处:《Science China Mathematics》2016年第3期609-616,共8页中国科学:数学(英文版)
基 金:National Natural Science Foundation of China (Grant Nos. 11371355 and 11471193)
摘 要:Let G be a weighted hypergraph with edges of size i for i = 1, 2. Let wi denote the total weight of edges of size i and α be the maximum weight of an edge of size 1. We study the following partitioning problem of Bollob′as and Scott: Does there exist a bipartition such that each class meets edges of total weight at least (w_1-α)/2+(2w_2)/3? We provide an optimal bound for balanced bipartition of weighted hypergraphs, partially establishing this conjecture. For dense graphs, we also give a result for partitions into more than two classes.In particular, it is shown that any graph G with m edges has a partition V_1,..., V_k such that each vertex set meets at least(1-(1-1/k)~2)m + o(m) edges, which answers a related question of Bollobás and Scott.让 G 是有为 i = 的尺寸 i 的边的加权的 hypergraph 1, 2。让 wi 表示尺寸 i 的边的全部的重量并且一是尺寸 1 的一个边的最大的重量。我们学习 Bollob
关 键 词:judicious partition balanced bipartition weighted hypergraph
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229