数据挖掘中一种容错的子空间聚类算法  被引量:3

A Fault-tolerance Subspace Clustering Algorithm in Data Mining

在线阅读下载全文

作  者:田进华[1] 孙利[1] 

机构地区:[1]黄淮学院信息工程学院,河南驻马店463000

出  处:《计算机工程》2016年第2期210-217,共8页Computer Engineering

基  金:河南省科技攻关计划基金资助项目(122102210430);河南省教育厅科学技术研究基金资助重点项目(14B520036)

摘  要:为提高现有子空间聚类算法的计算效率,根据对象、维度、模式容限以及相对性阈值约束缺失值数量,给出通用的容错子空间聚类定义,并对其单调性进行证明,提出一种面向受限属性中缺失值处理的容错子空间聚类算法。通过对子空间网格进行深度优先搜索删除低维冗余聚类,避免遍历子空间以提高聚类效率。基于真实数据和合成数据的实验结果表明,与CLIQUE,SCHISM聚类算法相比,该算法平均运行速度提升了60%-90%,即使面对缺失值情况,也可快速获得子空间聚类结果,具有较高的聚类质量。In order to improve the computation efficiency of the subspace clustering algorithm,this paper gives a general fault-tolerance subspace clustering definition according to the number of objects,dimensions,mode tolerance and relative threshold constraint,proves its monotonicity,and proposes a fault-tolerance subspace clustering algorithm for dealing with missing value in constrained attributes. It searches subspace grid by using depth-first strategy to delete low dimensional redundancy clustering,and avoids traversing the subspace effectively and improves the efficiency of clustering.Experimental results on real data and synthetic data show that the average speed of this algorithm improves 60% - 90% compared with CLIQUE,SCHISM clustering algorithm,and it can quickly determine the subspace clustering results even in the face of missing values,so it has higher clustering quality.

关 键 词:数据分析 多属性 缺失值 聚类 单调性 容错 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象